**Table of Contents**

** Unit 1 | Algebra**

Page 1 | Expressions and Formulae

Page 3| Solving Linear Equations

Page 4| Expanding and Factorising

Page 5| Factorising Quadratics and expanding double brackets

Page 6| Patterns and Sequences

Page 7| Simultaneous Equations

Page 8| Changing the subject of a Formula

Page 9| Adding , subtracting algebraic formulas

** Unit 2 |Graphs**

Page 1 | Straight line graphs

Page 2 | Graphs of Quadratic functions

** Unit 3 |Geometry and Measure **

Page 2 | Symmetry

Page 3 | Coordinates

Page 4 | Perimeter, Area, Volume

Page 6 | Measurement

Page 7 | Trigonometry

Page 8 | Pythagoras

Page 9 | Angles

Page 10 | Shapes

Page 11| Time

Page 12 | Locus

**Unit 4 | Numbers**

Page 1 | Speed, Distance and time

Page 2 | Rounding and estimating

Page 3 | Ratio and proportion

Page 4 | Factors, Multiples and primes

Page 5 | Powers and roots

Page 7 | Positive and negative numbers

Page 8 | Basic operations

Page 9 | Fractions

Page 10 | Percentages

** Unit 5 | Statistics and Probability **

Page 1 | Sampling data (MA)

Page 2 | Recording and representing data

Page 3 | Mean median range and mode

Page 4 | Standard deviation

**Unit 4 | Calculus **

*Ratio and proportion*

**Ratios**are way to express the**size of one part**in comparison to other parts.

**Proportions**express the**size of one part**in comparison to the whole.

**Example 1:**

In this box of Lego bricks, there are **2 green bricks** and **8 blue bricks**. This means that for every one green brick, there are four blue bricks. We can write this as a **ratio of 1:4**.

If we want to write the number of green bricks as a proportion, it is **2/10**, which can be **simplified to 1/5**.

3. If you want to **multiply** something that has **ratios**, it is important to remember that whatever is done to one of the parts must be done to all of the other parts.

**Example 2:**

A recipe for sponge cake has **100g flour**, **2 eggs** and **75g of sugar**. As a ratio, we can write this as **100:2:75**

Let’s say that we need to find out how much sugar we would need in a cake of the same ratios but with 300g of flour. The amount of flour has been tripled, so the other two parts must also be tripled.

**75 x 3 = 225** – the new cake would need **225g of sugar**.

**1)**

**2) There are 30 children in a class.For every 2 boys there are 3 girls. How many girls are there **

**3) To make pancakes of for 8 people you need.**

300g plan flour

6 large eggs

900ml milk

3 table spoon sunflower

How many eggs will be needed to serve 16 people.

**4) In Toby’s class, There are 3 people with a cat for every person who has a dog.There are 24 people in his class.How many dogs are there?**

**5)**

a) In this shape, How many triangle are there to squares?

b)What is the proportion of squares in the whole shape?